摘要
为了提高复杂背景噪声环境下的车型识别准确性,该文基于近似熵理论,对机动车行驶中辐射的声信号进行了研究。近似熵具有抗干扰能力强的特点,可用于提取动态背景噪声下机动车声信号的车型特征信息。首先,对声信号进行3层小波包分解;然后,利用近似熵量化第3层上各子频带信号的不规则性,描述各频带之间不同的变化趋势并作为目标车辆的声特征。为了提高分类有效性,将分解后的8个子频带信号的近似熵邻比值作为信号的特征向量,并基于支持向量机分类器实现了车型识别。分别在正常和有风两种气候条件下进行了实验,基于小波包近似熵的车型特征均获得了较为理想的分类精度。实验结果显示,小波包近似熵特征能有效地应用于机动车的声识别且对气候的影响具有一定的鲁棒性。
- 单位