摘要

为提升核反应堆燃料棒的燃耗预测能力,采用机器学习方法,依据数值计算VVER-1000型反应堆得到的U41型燃料棒的核素含量及平均燃耗数据样本,通过岭回归、BP神经网络和卷积神经网络3种算法,建立不同平均燃耗与核素含量间的回归模型,并以均方误差(MSE)及R2作为评估标准评价模型,利用训练好的模型在测试集中对目标进行预测。结果表明:岭回归、BP神经网络及卷积神经网络等机器学习方法在预测核素含量及平均燃耗方面有较高准确性,与传统方法相比,降低了整个测量过程的复杂程度,提高了测量效率,可为人工智能算法在核工业领域的应用提供参考。