摘要

现有的基于雷达传感器的手势识别方法,大多先利用雷达回波对手势的距离、多普勒和角度等信息进行参数估计,得到各种数据谱图,然后再利用卷积神经网络对这些谱图进行分类,实现过程较为复杂。该文提出一种基于串联式1维神经网络(1D-ScNN)的毫米波雷达动态手势识别方法。首先基于毫米波雷达获取动态手势的原始回波,然后利用1维卷积和池化操作对手势特征进行提取,并将这些特征信息输入1维Inception v3结构。最后在网络的末端接入长短期记忆网络(LSTM)来聚合一维特征,充分利用动态手势的帧间相关性,提高识别准确率和训练收敛速度。实验结果表明,该方法实现过程简单,收敛速度快,识别准确率可以达到96.0%以上,高于现有基于数据谱图的手势分类方法。