针对目前基于用户签到的地点推荐方法忽略了用户未评分的项集以及忽视了用户签到次数的差异,以及基于社交影响的地点推荐算法中缺乏对用户之间必要的相关性描述的情况,提出一种新的算法。该算法采用了一种线性的融合框架,有效地避免了单独考虑用户签到、社交因素进行地点推荐的弊端。实验结果表明,在距离限制变量、推荐地点个数相同的条件下,新算法的推荐准确率优于现有的推荐算法。与现有的算法相比,新算法有更好的推荐效果。