摘要
知识图谱(knowledge graph)链接预测可以解决知识图谱中缺失信息的发现和还原,是目前知识图谱领域的研究热点.传统的知识图谱链接预测方法大多面向静态的数据,并不适用于具有动态变化特性的时序知识图谱.时序知识图谱广泛存在于不同领域中,以临床医学领域为例,糖尿病作为一种典型的慢性病,其病程是一个疾病缓慢发展演化的过程.因此,在临床医学时序知识图谱上进行临床意义的链接预测,比如预测糖尿病的并发症,则需要考虑糖尿病病程发展随时间变化的时序特性,这也为传统的知识图谱链接预测方法带来巨大挑战.为此,结合临床医学事实知识的时序特性,提出一种基于LSTM序列增量学习的临床领域时序知识图谱链接预测模型.该模型结合LSTM长短期记忆单元递归神经网络在序列学习上的优势,通过构建基于LSTM的序列增量学习层,以端到端的方式提取时序知识图谱中的三元组时序特征,从而实现对时序知识图谱的链接预测.通过在糖尿病时序知识图谱上的实验,验证了模型的高效性、可用性及稳定性.
- 单位