BP神经网络算法在粮食仓储领域拥有巨大的应用价值和潜力。本文尝试将BP神经网络引入仓储小麦品质预警模型,以天津储粮抽检数据为对象,通过对室内温度的记录,样品水分、淀粉、蛋白质等11项生理生化指标的定期检测,利用BP神经网络算法进行仓储小麦的品质预测与影响分析。仿真结果表明,基于BP神经网络的数据预测方法具有较小的过程误差和较高的结果准确性,为仓储小麦的品质预测提供了一种有效的研究方法。