摘要

混流式水轮机尾水管压力脉动是影响水电机组稳定性的重要因素,监测和识别尾水管涡带状态对于保障水电机组的安全稳定运行十分必要。为此,采用能有效表征信号时频域特性的小波系数云图作为特征图像,并结合卷积神经网络对图像拓扑结构的良好适应性,将图像智能识别技术引入尾水管涡带状态识别领域,提出了基于连续小波变换与卷积神经网络的尾水管涡带状态识别方法,实现了时频图纹理特征的自动提取,避免了人工辨识并简化了特征预处理程序,能迅速准确识别尾水管涡带状态。根据某水电站单机容量200 MW的混流式机组变负荷试验数据对该方法进行实例验证,结果证明了其有效性。

  • 单位
    武汉大学; 水力机械过渡过程教育部重点实验室