摘要

通过将粒子群优化技术及BP神经网络技术相结合,建立了三种烃烷混合气体的红外光谱定量分析模型。混合气体主要由甲烷、乙烷、丙烷三种组分气体组成,三种组分气体浓度范围分别为0.01%~0.1%。文章首先采用主成分分析技术从红外光谱1866个数据中提取了5个特征变量作为神经网络的输入,将气体浓度作为网络输出。然后将粒子群优化算法与BP神经网络技术相结合,对网络的隐含层节点数进行了优化选择。再对结构优化后的网络进行训练,建立气体分析模型。分析模型的标准气体验证实验结果表明,采用此方法建立混合气体红外光谱定量分析模型所用时间(大约4600s)比单纯采用BP神经网络进行遍历优化建模所用时间(大约24500s...