摘要
在大量数据支持的背景下,如何高效利用大量SAR图像,提升舰船目标的检测精度是当前舰船目标检测的难题。本文聚焦如何提升YOLOv4算法对SAR舰船目标的检测精度,提出了一种融合多尺度和注意力增强的YOLOv4增强算法。在原YOLOv4的PANet中加入注意力模块(CBAM),同时使用加强的K-means聚类算法对数据集中的舰船目标真实框进行聚类,并对锚框结果进行线性比例变换,让算法锚框更适合于训练集。实验证明本文提出的算法在SAR舰船检测中的平均准确率(mAP)达到了94.05%,比原始YOLOv4精度提高了0.7%。实验结果充分证明本文提出的算法能够提升SAR舰船图像检测精度,为海上活动判断精确化提供技术支持。
- 单位