一种基于改进YOLOv4的SAR舰船检测算法

作者:陈洋; 张明; 杨立东; 喻大华; 张宝华; 李建军
来源:电子测量技术, 2022, 45(11): 120-125.
DOI:10.19651/j.cnki.emt.2208891

摘要

在大量数据支持的背景下,如何高效利用大量SAR图像,提升舰船目标的检测精度是当前舰船目标检测的难题。本文聚焦如何提升YOLOv4算法对SAR舰船目标的检测精度,提出了一种融合多尺度和注意力增强的YOLOv4增强算法。在原YOLOv4的PANet中加入注意力模块(CBAM),同时使用加强的K-means聚类算法对数据集中的舰船目标真实框进行聚类,并对锚框结果进行线性比例变换,让算法锚框更适合于训练集。实验证明本文提出的算法在SAR舰船检测中的平均准确率(mAP)达到了94.05%,比原始YOLOv4精度提高了0.7%。实验结果充分证明本文提出的算法能够提升SAR舰船图像检测精度,为海上活动判断精确化提供技术支持。

全文