摘要
提出一种基于动态运动原语(DMP)和自适应控制的机器人技能学习方法.现有的DMP从单示教轨迹中学习动作,且其高斯基函数分布方式固定,并不适用于各种不同特征的动作轨迹.因此,将高斯混合模型和高斯混合回归引入DMP中,使其能从多示教轨迹中学习技能,并且将径向基神经网络(RBFNN)引入DMP中构成RBF-DMP方法,以梯度下降的方式学习高斯基中心位置和权重,提高技能学习的精度.设计自适应神经网络控制器,用于控制机械臂复现示教中学习的动作.在Franka Emika Panda协作机械臂上开展实验研究,验证方法的有效性.
- 单位