摘要
烟标、卡片等片状产品的准确计数对企业成本的控制具有重要价值。然而,薄片产品数量大、种类多,其端面图像易出现薄片条纹对比度低、灰度不均、宽度不一、粘连和断裂等问题。此外,传统视觉检测方法仅凭图像的单一特征无法实现多种叠层薄片的兼容检测。针对这些难题,提出一种基于深度卷积神经网络的叠层薄片条纹检测方法。此方法利用端到端卷积网络分割叠层薄片端面图像的条纹区域,用于薄片计数。实验结果表明,本文方法相比于传统方法具有更好的准确性和鲁棒性。深度卷积神经网络拥有较大的上下文和多尺度信息,从而可解决困扰传统图像处理方法面临的粘连、破损和低对比度等问题,拓宽叠层薄片智能计数的应用领域。
- 单位