摘要

医疗领域患者的主诉信息是医疗文本分类工作的关键,能为智慧医疗和信息文本归类提供有力的支持;近几年来随着深度学习的发展应用,基于传统深度学习技术的全流程病历质量控制模型层出不穷,但传统模型存在很多缺点和局限性,诸如训练速度慢、精度损失、过拟合和无法处理大规模数据的问题,因此,引入改进的深度学习算法;指南指导下基于深度学习的全流程病历质量控制系统实验结果为:将词向量设置成160时双向循环神经网络模型效果最优,准确率为84.9%;BiGRU-SA MODEL,精准度受向量维度的影响并不大;而改进的文本分类式前馈神经网络模型,精准度在其进行第3次和第4次迭代更新时,发生指数级增长,并在第3次迭代时,精度达到理想值,为83%;随着迭代次数的增加,模型准确率呈现先增大后减小的趋势,在进行第6次迭代时模型效果最优,准确率为84.9%;优化后的全流程病历质量控制模型在变动率指标下的面积的值、准确率、F1、召回率四项指标值都有了一定的提升,以上结果能更好地解决过拟合和特征信息丢失的问题,并且实现全流程病历质量的控制。

全文