摘要

变流器是电力机车牵引系统的关键部件之一,其故障易导致列车运行瘫痪,是机车故障中危害性较大的一类。针对基于专家经验的牵引变流器故障诊断仿真模型和特征选取泛化性较差问题,文章提出一种基于深度卷积神经网络的故障诊断方法,其通过修改Xception模型卷积和池化层结构参数以匹配牵引变流器故障数据并进行训练。实验结果显示,本文所提方法 Top-1准确率为0.842 2,Top-3准确率为0.920 1,表明将深度卷积神经网络用于牵引变流器故障诊断具有较好的鲁棒性和准确性,且通过通道增强后可以提高模型的泛化能力并实现故障分类。

  • 单位
    株洲中车时代电气股份有限公司

全文