摘要

车道线是行车安全的重要参考。为提高无人驾驶行车过程中车道线检测的准确性和实时性,提出一种基于改进概率霍夫变换的车道线快速检测方法。首先对获取的图像进行感兴趣区域提取,根据车道线颜色的特殊性,合理选取三色通道的比值对图片进行灰度化,为增强阈值处理的鲁棒性,采用大津二值化法对灰度图像进行二值化,由于Canny算子具有良好的定位边缘的能力,本次边缘提取算子选取为Canny。接着分别从车道线长度、角度、车体和车道宽度4个方面提出4点约束条件对该算法加以改进,剔除干扰线和伪车道线,最后通过线性回归法拟合出正确车道线。实验结果表明,该算法在快速检测车道线的同时保证了检测的准确率,并将实验结果与其他算法进行比较,证明了该算法的实时性和准确性优于其他算法。