摘要
MEMS陀螺温度漂移严重影响系统的测量精度。传统的BP神经网络建模补偿容易使权值和阈值陷入局部极小值,导致网络训练失败。陀螺输出信号中的高频噪声也会影响模型精度。针对上述问题,该文提出一种Kalman滤波结合粒子群算法(PSO)优化BP神经网络的MEMS陀螺温度漂移补偿方法。首先对陀螺进行了温度漂移测试实验,然后采用Kalman滤波对实验数据进行降噪,最后建立陀螺温度漂移模型,从而实现温度漂移的补偿。实验结果表明,采用该方法补偿后MEMS陀螺在不同温度下的输出方差降低了65.09%,与传统的BP神经网络相比补偿精度明显提高。
-
单位西安工业大学; 陕西华燕航空仪表有限公司