摘要

边缘计算广泛应用于物联网、车联网和在线游戏等新兴领域,通过网络边缘部署计算资源为终端设备提供低延迟计算服务.针对如何进行任务卸载以权衡任务执行时间与传输时间、如何调度多个不同截止期任务以最小化总延迟时间等挑战性问题,提出1种异构边缘协同的任务卸载和调度框架,包括边缘网络拓扑节点排序、边缘节点内任务排序、任务卸载策略、任务调度和结果调优等算法组件;设计多种任务卸载策略和任务调度策略;借助多因素方差分析(multi-factor analysis of variance,ANOVA)技术在大规模随机实例上校正算法算子和参数,得到统计意义上的最佳调度算法.基于EdgeCloudSim仿真平台,将所提出调度算法与其3个变种算法从边缘节点数量、任务数量、任务分布、截止期取值区间等角度进行性能比较.实验结果表明,所提出调度算法在各种情形下性能都优于对比算法.