摘要

滚动轴承全寿命周期性能退化监测是设备主动维修技术重要的组成部分,对损伤状态进行有效评估可以实现设备接近零停机运行,发挥机器的最大生产力。为有效描绘滚动轴承性能退化趋势,提出一种基于流形学习的模糊C均值(Fuzzy C-means algorithm,FCM)方法。首先提取监测信号的时域、频域特征及小波包时频域特征组成高维特征集,然后按确定的本征维数提取高维特征集的低维流形特征,进而建立基于局部线性嵌入流行学习(Locally linear embedding,LLE)的模糊C均值模型评估轴承当前运行状态。通过IMS滚动轴承全寿命试验,验证了该方法能够有效描绘滚动轴承性能退化阶段,为预知维修提供了重要信息。