摘要

汽车灯罩碎片是交通肇事案件现场经常出现的物证。为了实现对汽车灯罩物证的准确检验,该文提出一种将原始光谱与导数光谱相结合的光谱融合技术。收集不同类别和多种品牌的汽车灯罩共计44个,采用傅里叶变换红外光谱技术对样本进行分析,提取其原始光谱数据和一阶导数光谱数据,并结合化学计量学构建分类模型。在对汽车灯罩类别进行分类的Fisher判别分析模型中,单独的原始光谱数据和一阶导数光谱数据的分类准确率分别为86.40%和84.10%,融合后的光谱数据分类准确率达到93.20%,分类准确率明显提高。通过主成分分析优化模型后,融合光谱的分类准确率达到97.70%,且在进一步对汽车灯罩品牌进行分类时,分类准确率达到100.00%,实验结果理想。而在K近邻算法模型中,由于受到样本不均匀的影响,分类准确率较低。结果表明,基于原始光谱与导数光谱的光谱融合技术能够实现对汽车灯罩样本的准确分类,可以为光谱融合技术在分析检测领域的应用提供借鉴和参考。