摘要

该文针对法律领域民事案件中的"交通事故"类案件进行研究,期望在该"交通事故"数据集上实现自动判案。从"中国裁判文书网"采集14 000条数据文本,并对数据进行人工标注。基于对数据集的分析,分别对数据进行粗粒度和细粒度分类,粗粒度为4类,细粒度为8类。该文使用了三种模型:基于SVM的模型、基于BI-GRU的模型和基于Attention+BI-GRU的模型。实验结果表明:在该数据集上,对数据进行粗粒度分类时,基于Attention+BI-GRU的模型F1值为80.26%,基于SVM的模型为77.24%,基于BI-GRU的模型为72.65%。在细粒度分类时,基于BI-GRU的模型F1值为48.59%,基于SVM的模型为38.29%,基于Attention+BI-GRU的模型为40.87%。