摘要

在基于模型参数的迁移学习研究中,两域样本的分布差异、源模型卷积层之间的互适应性都是影响模型迁移性能的重要因素。针对上述问题,提出一种多层卷积适配(MCA)深度迁移框架并将其应用于台风卫星云图的等级分类,在交叉熵函数的基础上添加L-最大均值差异(MMD)算法作为正则项,并对样本在再生核希尔伯特空间(RKHS)中的分布进行线性的无偏估计,最终定义了CE-MMD损失函数。在反向传播过程中,将残差和两域样本分布的差异共同作为网络参数更新的指标,使得迁移模型收敛速度更快、精度更高。在自建的台风数据集上对L-MMD算法和Bregman差异、KL散度两种度量算法进行对比实验,结果表明所提算法的精度分别高出11.76个百分点和8.05个百分点。实验结果表明,L-MMD算法优于其他度量算法,而且MCA深度迁移框架具有可行性。