摘要
图片描述翻译是给定图片及图片在某一语言的描述,利用翻译技术为图片生成目标语言描述的任务。观察发现,不同图片表达的场景往往不同,对应的图片描述具有明显的主题差异性。因此,利用主题信息能够提升翻译效果。然而,图片描述的内容通常较短,无法有效反映其主题。针对该问题,该文提出了一种融合图片主题信息的图片描述翻译方法。对于任意的图片描述对,该方法首先借助相似图片检索技术从维基百科图片库中检索与源图片相似的目标图片,进而利用包含目标图片的文档学习源图片的主题表示。最终,利用训练集中所有图片描述对的主题表示重新学习并获取适应主题的翻译模型。实验结果表明,借助相似图片获取信息量更为丰富的描述文本,并利用文本的主题信息强化翻译模型的方法,能够提高现有统计机器翻译系统的性能,在WMT16测试集上进行的评测显示,翻译质量的BLEU值提升了0.74个百分点。
- 单位