摘要
对于网络中拥有的复杂信息,需要更多的方式抽取其中的有用信息,但现有的单特征图神经网络(GNN)无法完整地刻画网络中的相关特性。针对该问题,提出基于混合特征的图卷积网络(HDGCN)方法。首先,通过图卷积网络(GCN)得到节点的结构特征向量和语义特征向量;然后,通过改进基于注意力机制或门控机制的聚合函数选择性地聚合语义网络节点的特征,增强节点的特征表达能力;最后,通过一种基于双通道图卷积网络的融合机制得到节点的混合特征向量,将节点的结构特征和语义特征联合建模,使特征之间互相补充,提升该方法在后续各种机器学习任务上的表现。在CiteSeer、DBLP和SDBLP三个数据集上进行实验的结果表明,与基于结构特征训练的GCN相比,HDGCN在训练集比例为20%、40%、60%、80%时的Micro-F1值平均分别提升了2.43、2.14、1.86和2.13个百分点,Macro-F1值平均分别提升了1.38、0.33、1.06和0.86个百分点。用拼接或平均值作为融合策略时,准确率相差不超过0.5个百分点,可见拼接和平均值均可作为融合策略。HDGCN在节点分类和聚类任务上的准确率高于单纯使用结构或语义网络训练的模型,并且在输出维度为64、学习率为0.001、2层图卷积层和128维注意力向量时的效果最好。
- 单位