摘要
为解决在模板匹配过程中,目标图像发生局部遮挡、背景变化、光照变化以及剧烈非刚性形变等情况而出现的匹配失败问题,本文提出了一种基于多特征融合的共生矩阵模板匹配算法。首先,采用多特征融合的方法提取图像信息。分别提取图像的颜色特征、深度特征、方向梯度直方图(HOG)特征,通过主成分分析(PCA)与K均值聚类的方法实现多通道多特征融合;随后,以共生矩阵作为相似性度量方法,通过统计相似性特征信息来代替直接施加距离计算;最后,计算滑动窗口中每一组像素点对的共生概率,并加权求和作为匹配得分,由此在目标图像上寻找最佳匹配区域。通过实验对比,本文算法的AUC(Area Under Curve)得分为0.658 6,较目前最好的几种模板匹配算法DDIS-D、DDIS-C、BBS算法分别提高了:7.9%,8.1%,20.2%。采用特征融合的方法能够充分利用图像信息,有效提高匹配的准确率;共生矩阵可以捕获图像的纹理相似性,且这种度量方法仅与共生统计有关,与实际像素无关,能够在一定程度上克服复杂场景对匹配结果带来的影响。实验结果表明本文的方法匹配精度更高、鲁棒性更强。
-
单位中国科学院沈阳自动化研究所; 中国科学院大学; 辽宁省图像理解与视觉计算重点实验室