摘要
行人入侵是影响铁路行车安全的重要因素。为有效解决短焦距摄像机在大视场中小尺度行人检测精度低的问题,提出一种注意力机制引导下的多级特征融合网络模型。首先,将YOLOv3作为主干网络,针对多次降采样后行人特征丢失的问题,设计四倍降采样分支以利用高分辨率特征有效提取小尺度行人信息。其次,特征融合阶段引入通道-空间注意力机制以抑制低层特征中背景噪声干扰。最后,引入CIoU损失函数用于行人目标框的回归,解决均方误差损失函数存在的优化不一致及尺度敏感问题。实验结果表明,相较于经典YOLOv3以及现阶段主流目标检测算法,本算法具有更高的检测精度,在自建铁路私有数据集和Caltech公开数据集的各子集上对数平均漏检率均有明显降低。
-
单位电子信息工程学院; 北京世纪瑞尔技术股份有限公司; 北京交通大学