摘要

目的探讨全组织包埋免疫荧光染色技术及激光散斑血流成像技术在小鼠耳部跨区皮瓣研究中的特点和优势。方法共选取25只ICR小鼠,取其中10只,剪断鼠耳中间及外尾侧血管束,建立跨区耳瓣模型,观察建模3 d后耳瓣血供变化情况,同时观察健侧鼠耳的面积、组织层次厚度及血管分布情况。另取5只小鼠,建跨区耳瓣模型,方法同前。于建模后第3天,获取建模侧鼠耳并将其解剖分为前层皮肤、软骨及后层皮肤,取前层皮肤,采用全组织包埋免疫荧光染色技术对耳内的血管、神经及单核巨噬细胞进行染色,观测耳瓣中血管、神经及单核/巨噬细胞的分布及形态。取剩余10只小鼠,在小鼠耳部中间血管体分叉以上水平剪穿鼠耳,建立延迟跨区耳瓣模型,采用激光散斑血流成像仪观测小鼠耳部的血流变化情况,记录术后即刻、1 d、2 d、3 d、4 d时血管的血流灌注值。结果鼠耳面积约为1.3 cm2,厚度为(0.16±0.04) mm,由外尾侧血管束、中间及内头侧3个血管束供血,在剪断鼠耳中间及外尾侧血管束后可形成跨区皮瓣缺血模型。鼠耳前、后层皮肤及软骨的厚度分别为(88±5)μm、(41±3)μm及(29±2)μm;全组织包埋免疫荧光染色清晰地显示在建模后3 d,choke区域呈放射分布的小血管,直径为(50±6)μm,可见小血管之间扩张弯曲的毛细血管,小鼠耳部神经与动脉呈伴行关系,神经节段攀附至动脉表面,而与静脉并无明显伴行和攀附,扩张、弯曲的动脉内有明显数量的单核巨噬细胞成簇分布,而在动脉外侧仅呈游离散在分布。通过激光散斑血流成像仪可观测到在延迟跨区耳瓣模型后,每个耳瓣内有(6±2)条横向走行的血管管径及血流量有明显增大,术后即刻、1 d、2d、3 d、4d时,横向走行血管的平均血流灌注值分别为(92±11)PU、(136±26)PU、(147±27)Pu及(176±27)PU。结论全组织包埋免疫荧光染色及激光散斑血流成像技术可很好地观测小鼠跨区耳瓣的血管、神经、单核巨噬细胞及血流灌注情况,在小鼠跨区皮瓣血供的研究中可发挥重要作用。