摘要

电网拓扑结构复杂、分支众多、潮流分布不平衡、故障样本较少且难以获取。为提高配电网的故障诊断准确性,提出将迁移学习的思想与卷积神经网络(convolutional neural networks, CNN)相结合,以此来解决目标域样本不足导致训练效果差的问题,同时利用主成分分析(principal component analysis, PCA)对时序数据进行降维,提升运行速率,形成配电网故障诊断方法。首先对PCA和CNN的结构特点进行分析;然后通过仿真模拟不同的故障条件,生成面向CNN的时序数据。再通过最大均值差异法(MMD)选择出最适合迁移的源域数据,建立源域故障识别的预训练模型。最后使用目标域数据,在预训练模型的基础上进行迁移微调训练,得到故障诊断模型。仿真结果表明,该方法能够在小样本的情况下迅速完成对故障类型的精准预测。

  • 单位
    国网安徽省电力有限公司; 国网安徽省电力有限公司电力科学研究院; 自动化学院; 安徽大学