摘要
江苏省是农作物种植大省,国家统计局统计数据显示,江苏省近10年冬小麦、冬油菜的总播种面积分列全国第五、第七,快速准确地获取冬小麦和冬油菜的空间分布对于该省的农业发展具有重意义。基于单机的传统遥感分类能够准确获取农作物的空间分布信息,但是耗时较长。随着地理大数据与云平台、云计算的发展,Google Earth Engine(GEE)作为一个基于云平台的全球尺度地理空间分析平台,为快速遥感分类带来了新的机遇。本文基于GEE,使用Sentinel-2数据快速提取了江苏省2017年冬小麦与冬油菜的空间分布。首先,利用GEE获得覆盖江苏省119景无云质优的Sentinel-2影像;其次,在此基础上分别计算了遥感指数、纹理特征、地形特征,并完成原始特征的构建与优化;最后,分别试验了朴素贝叶斯、支持向量机、分类回归树和随机森林4种分类器,比较了各分类器的分类精度,并提取了冬小麦与冬油菜的空间分布信息。得出以下结论:①GEE能够快速完成覆盖江苏省影像数据的去云、镶嵌、裁剪及特征构建等预处理,较本地处理具有明显优势;②J-M距离值位于前两位且大于1将特征数量从28个压缩到11个,有效压缩了原始特征空间;③光谱+纹理+地形特征组合训练,朴素贝叶斯、支持向量机、分类回归树、随机森林的平均验证精度分别为61%、87%、89%、92%。
-
单位遥感科学国家重点实验室; 中国科学院大学; 中国科学院遥感与数字地球研究所