摘要

群机器人逃逸围捕一直是人工智能和机器人领域的研究热点之一。在面向多逃逸者时,如何为每个逃逸者高效地分配合适的机器人以完成协同围捕是一个难点问题。已有研究大都采用距离优先分配的策略,为每个逃逸者选择离它最近的一组机器人进行围捕,在逃逸者数量较多的情况下,难以实现围捕任务的均衡分配,降低了系统围捕的效率。为此,提出了一种基于多种群协同进化的多逃逸者围捕任务分配算法。首先,构建了一种全方向的群机器人逃逸围捕任务分配数学模型;然后,基于遗传算法和多种群协同进化提出了一种多逃逸者围捕任务分配算法,设计了相应的编码方式、交叉和变异策略;最后,在开发的群机器人逃逸围捕仿真平台上测试了算法的有效性。对比实验结果表明,所提算法在完成围捕任务所耗费的步数上最多降低了20%,围捕效率最大提高了25%。

全文