摘要

针对目前电能质量混合扰动识别精度不高的问题,引入了受限玻尔兹曼机(RBM)算法。RBM是深度学习的一种新颖算法,在语音识别、机器视觉和图像恢复等领域已取得了很好的应用成果,但在电能质量复合扰动识别上尚未涉及。区别于传统算法提取特征的方式,深度网络通过提取波形的固有抽象特征,克服了人工特征选择的缺陷以及传统神经网络训练时收敛速度慢、容易限于局部最优的缺点。复合扰动信号经过深度网络自动获得特征参数,再经过分类器进行分类识别。实验验证该算法在电能质量复合扰动识别上可以达到很高的性能,优于传统的识别方法。

全文