摘要
针对目标检测任务中小目标尺寸较小、背景复杂、特征提取能力不足、漏检和误检严重等问题,提出了一种基于YOLOv8s改进的小目标检测算法——Improved-v8s。Improved-v8s算法重新设计了特征提取和特征融合网络,优化检测层架构,增强浅层信息和深层信息的融合,提高了小目标的感知和捕获能力;在特征提取网络中使用部分卷积(Partial Convolution, PConv)和高效多尺度注意力(Efficient Multi-scale Attention, EMA)机制构建全新的F_C2f_EMA,在降低网络参数量和计算量的同时,通过通道重塑和维度分组最大化保留小目标的特征信息;为了更好地匹配小目标的尺度,优化调整SPPCSPC池化核的尺寸,同时引入无参注意力机制(Simple-parameter-free Attention Module, SimAM),加强复杂背景下小目标特征提取;在Neck部分使用轻量级上采样模块——CARAFE,通过特征重组和特征扩张保留更多的细节信息;引入了全局注意力机制(Global Attention Mechanism, GAM)通过全局上下文的关联建模,充分获取小目标的上下文信息;使用GSConv和Effective Squeeze-Excitation(EffectiveSE)设计全新的G_E_C2f,进一步降低参数量,降低模型的误检率和漏检率;使用WIoU损失函数解决目标不均衡和尺度差异的问题,加快模型收敛的同时提高了回归的精度。实验结果表明,该算法在VisDrone2019数据集上的精确度(Precision)、召回率(Recall)和平均精度(mean Average Precision, mAP)为58.5%、46.0%和48.7%,相较于原始YOLOv8s网络分别提高了8%、8.5%和9.8%,显著提高了模型对小目标的检测能力。在WiderPerson和SSDD数据集上进行模型泛化性实验验证,效果优于其他经典算法。