摘要
利用环道实验装置模拟实际管道的不同工况,应用小波分析对原始信号降噪,并利用基于核的主成分分析方法(KPCA)提取处理后泄漏信号的时频域特征值,得到神经网络最终输入向量。由于传统BP神经网络在进行工况识别时容易陷入局部极小值,因此利用遗传算法(GA)和粒子群算法(PSO)对BP神经网络进行优化。结果表明,两种优化后的神经网络相较传统BP神经网络具有更强的识别泄漏工况能力。最后从测试准确度和训练时间两个方面,对两种不同优化算法进行对比并提出其不同的适用情况。
- 单位
利用环道实验装置模拟实际管道的不同工况,应用小波分析对原始信号降噪,并利用基于核的主成分分析方法(KPCA)提取处理后泄漏信号的时频域特征值,得到神经网络最终输入向量。由于传统BP神经网络在进行工况识别时容易陷入局部极小值,因此利用遗传算法(GA)和粒子群算法(PSO)对BP神经网络进行优化。结果表明,两种优化后的神经网络相较传统BP神经网络具有更强的识别泄漏工况能力。最后从测试准确度和训练时间两个方面,对两种不同优化算法进行对比并提出其不同的适用情况。