摘要

为解决电动飞机主驱动电机故障诊断方法因电机结构复杂、信号非平稳与机械大数据等因素引起的诊断困难问题,提出了基于深层卷积神经网络的电动飞机主驱动电机故障诊断新方法。首先研究了SoftMax分类器判断故障类型问题。其次研究了卷积神经网络结构中激活函数对模型诊断结果准确率的影响,利用残差模块提高了深度卷积神经网络模型的准确率。Python仿真表明:在同等条件下卷积神经网络电动飞机主驱动电机故障诊断的准确率和运行时间都优于SDAE、ASPNN。

  • 单位
    沈阳工程学院