摘要

(目的)基于TBM施工数据进行围岩感知对保障TBM施工安全、提高施工效率至关重要,其中TBM掘进参数预测的准确率是检验围岩感知效果的重要依据。(方法)为此,本文以吉林引松工程TBM 3标段为研究对象,选取TBM上升段破岩数据为输入特征X1,选择两个施工控制参数(刀盘转速和推进速度)为输入特征X2,构建卷积神经网络机器学习模型,对TBM施工响应参数Y(刀盘扭矩和总推力)进行预测。按照学习对象的不同,分别构建了只学习稳定段掘进响应行为的点预测模型和同时学习上升段和稳定段掘进响应行为的线预测模型,(结果)结果表明:点预测模型无法描述控制参数对施工响应参数的影响;线预测模型虽然可以描述控制参数对施工响应参数的影响,但是对稳定段的掘进响应预测数值偏低。考虑到上述局限性的原因是稳定段行为样本数量只占总样本数量的9%,本文提出了一种通过调节损失函数的方法来提高稳定段行为样本的权重,显著提高了线预测模型的预测精度。(结论)改进后的结果表明:在TBM掘进参数预测中,应对整个掘进段的行为进行学习,并提高稳定段行为的权重,以便获得高精度的掘进响应参数预测模型。本文获得的模型能够为进一步的围岩感知和控制参数优化提供基础。