将小波分析技术与神经网络技术相结合,通过小波分析技术对振动信号进行滤波消噪,构建时频关联分析的信号特征表征轴承的故障信息,实现准确的故障特征提取。运用神经网络方法具有的网络自适应能力,自学习能力,在背景噪声统计特性未知的情况下,提高轴承故障诊断系统的鲁棒性和可靠性,构建低成本、高可靠的滚动轴承故障分析诊断系统,实验结果表明,系统在训练信号、检测信号采集位置不同,训练轴承受损程度、检测轴承受损程度不同的情况下,均具有良好的检测识别能力,说明系统具有良好的鲁棒性,该方法有效可行。