基于改进CNN-BiGRU-att模型的文本分类研究

作者:陈农田; 李俊辉; 满永政
来源:昆明理工大学学报(自然科学版), 2022, 47(01): 30-37.
DOI:10.16112/j.cnki.53-1223/n.2022.01.131

摘要

为解决单一的卷积神经网络(CNN)缺乏利用上下文本信息与单一循环神经网络(RNN)对局部信息把握不全面问题,提出一种基于注意力机制的多通道TextCNN-BiGRU分类模型.首先,通过word2vec对初始文本向量化,经实验选取窗口值组成三通道.然后利用CNN的强学习能力提取局部特征,利用双向门控循环单元(BiGRU)提取上下文全局信息,运用注意力层与池化层获取并优化重要的特征.最后采用softmax函数使误差loss极小化.仿真实验结果表明,提出的模型分类性能,准确度达94%,损失函数值稳定在0.22%左右,具有良好的泛化能力,能够有效解决单一模型挖掘信息不全问题,有效提高分类效果.

全文