传统均值漂移跟踪算法都是基于单个特征空间,这不能较好地解决特征相似目标对跟踪的干扰.文中归纳多种具有分布特性的局部性特征,并对各种特征的区分能力提出具体的测度方法,使得特征的选择能够自适应.并在分析均值漂移算法中权重值计算的基础上,提出在多特征空间下,依据特征区分能力赋予相应的权重值,进而融合至均值漂移算法中.改进算法能够有效利用各种特征,使其相互补足,提高目标跟踪的鲁棒性.对于视频序列的实验表明,改进算法能够对受干扰的目标进行有效的实时跟踪.