摘要

为解决高分影像特征间相关性大冗余度高、FCM聚类稳健性差带来的分类精度不佳问题,提出一种基于mRMR选择和改进FCM聚类的影像分类算法。首先基于对象置信度指标(OC)进行影像分割,然后利用mRMR算法实现特征选择,解决特征冗余问题,最后将提取的特征输入分类器通过IFCM聚类,得到最终分类结果。试验结果表明,本文算法能减少特征间相关性,降低冗余,并有效提高影像分类精度。

全文