摘要

为了实现对圆锥等特殊物品的抓取,本文提出了一种基于强化学习的三指灵巧手机器人抓取方法.本文使用DenseNet-121网络实现了图像的分类,使用ImageNet数据集进行预训练,以解决数据集较少时易出现过拟合的问题;并基于强化学习中的Q-Learning算法,在完全卷积网络中进行端到端的训练,学习视觉运动策略,最后在少量数据集上测试算法.实验结果表明,使用三指灵巧手能够有效抓取圆锥、圆球等物体;同时,该方法训练生成的模型有效建立了像素图像数据与机器人执行运动抓取动作之间的映射关系,根据这种映射关系选出的最优Q值,提高了抓取成功率.