摘要

为提高月径流预测精度,提出了基于两阶段分解策略的预测模型。首先通过基于加权回归的季节趋势分解(Seasonal-Trend Decomposition Using Loess, STL)将原始径流序列分解为趋势项、季节项和残差项,再通过变分模态分解(Variational Mode Decomposition, VMD)将随机性较强的残差项进一步分解以剔除噪声,利用长短期记忆网络(LongShort Term Memory, LSTM)、卷积神经网络(Convolutional Neural Network, CNN)和支持向量回归(Support Vector Regression, SVR)3种机器学习模型对各分量逐一预测,月径流预测结果为各分量预测值的线性集合。以澧水流域石门站为研究对象,选取平均绝对误差(Mean Absolute Error, MAE)、平均绝对百分比误差(Mean Absolute Percentage Error, MAPE)和纳什效率系数(Nash-Sutcliffe Efficiency Coefficient, NSE)等指标对模型预测精度进行综合评估,并结合SHAP(SHapley Additive exPlanations)可解释机器学习方法探究最优模型中各输入特征对径流预测结果的贡献程度。结果表明:LSTM和CNN模型预测精度整体优于SVR模型,但模型结构差异造成的预测精度变化小于输入项差异造成的变化;两阶段分解后各分量对预测结果的贡献优于其他输入特征,模型预测精度整体提升,且对高流量事件预测精度的提升尤为显著。