摘要
本发明公开了一种基于深度学习与低秩矩阵优化的哈希图像检索方法,包括以下步骤:S1、获取图像数据,对数据进行标注和预处理,构造图像检索的数据集,并将其分为训练集与测试集;S2、搭建深度特征提取网络,构建深度哈希网络主干;S3、将训练集输入深度哈希网络主干,基于极大化概率似然和低秩正则化损失函数,构建哈希网络;S4、对哈希网络进行训练;S5、将测试集与训练集图像分别输入哈希网络,生成二值哈希编码,计算相互的汉明距离;S6、返回训练集中汉明距离最小图片作为检索结果。本发明克服了直接用二值化连续值特征编码到汉明空间造成的相似性信息破环和量化误差大的问题,提高了基于哈希表征的图像检索方法的性能。
- 单位