摘要

在多示例多标记学习问题中,标记之间往往是相互关联的,其中有向无环图结构是一种常见的层次关联结构,可见于蛋白质的基因本体学生物学功能预测的应用场景中。针对其标记间的有向无环图结构,提出了一种新的多示例多标记学习算法。算法从原始数据的特征空间训练出所有标记共享的低维子空间,通过随机梯度下降方法来降低模型排序损失,并融入标记间有向无环图结构关系对预测标记进行优化。将该算法应用于多个数据集的蛋白质功能预测中,实验结果表明,该算法具有更高的效率及预测性能。