摘要

在西部黄土高原复杂地形地貌下构建采煤沉陷盆地和提取水平位移的难度较大,传统地表沉降监测手段只能获取线状数据,效率低,而重复轨道合成孔径雷达干涉测量技术在大梯度形变区域易出现失相干现象,难以达到矿区地表沉降监测精度要求。提出了一种基于无人机载激光雷达点云数据构建沉陷盆地和提取水平位移的方法。结合多地形因子构建深度神经网络(deep neural network,DNN)模型,提取沉陷盆地构建过程中受地形影响较小的特征稳定区,利用较优插值算法对稳定区进行拟合,得到完整沉陷盆地。为了提取采煤地表水平移动信息,将二进制形状上下文特征描述算子与多地形因子融合起来,以改进特征匹配算法。基于此设计地表水平移动提取方案,提取主断面水平移动信息,同时对水平移动提取误差与点云密度、地形因子进行定量分析。榆神矿区结果表明,利用结合地形因子的DNN模型能有效提取特征稳定区,在复杂地貌下减小了沉陷建模误差,为构建采煤沉陷盆地提供了一种新方法;利用融合地形特征的改进特征匹配算法提取的水平移动曲线符合采煤沉陷水平移动基本规律,与水平移动偏差相关性较强的地形因子可用于衡量改进特征匹配算法对水平移动提取误差的大小。

全文