摘要
针对模拟电路软故障诊断准确度不高的问题,提出一种基于粗糙集(RS)-粒子群算法(PSO)-支持向量机(SVM)集成的模拟电路软故障诊断方法。首先利用粗糙集理论对采集的模拟电路软故障特征信息进行维数约简,然后利用粒子群算法对支持向量机的参数进行优化,以提高支持向量机分类器的诊断性能,最后进行故障诊断。对四运放双二次高通滤波器进行仿真,实验结果表明,基于RS-PSO-SVM集成的模拟电路软故障诊断方法是有效的。与其他常用方法相比,该诊断方法具有更好的故障诊断性能。
-
单位金陵科技学院; 南京航空航天大学; 电子信息工程学院; 南京信息职业技术学院