摘要

针对目前癫痫自动检测算法多集中于为单个患者建立检测模型,泛化能力较弱的问题,提出一种基于机器学习的跨患者癫痫自动检测算法.该算法使用多个癫痫患者的脑电数据,先对数据进行预处理后分析脑电数据间存在的特征,再对特征进行筛选,训练出一个跨患者的癫痫自动检测模型.该算法不需为每个患者建立单独的检测模型,实现了仅使用一个检测模型即可对不同患者进行癫痫检测.实验结果准确率为0.877 4,敏感性为0.854 8,特异性为0.9.

全文