摘要

针对粒子群算法(PSO)易早熟收敛、逃离局部最优能力差、精度低等缺点,提出一种基于灰狼优化的反向学习粒子群算法。该算法对最优粒子采用反向学习策略产生反向解,扩大种群的搜索范围,增强了算法的全局搜索能力;对其非最优粒子采用新型社会学习方式,提高其搜索效率和开采性能;同时,针对PSO收敛精度较低的问题,引入灰狼优化算法,并对其收敛因子产生扰动,平衡算法全局和局部搜索性能并提高其精度。在CEC2017测试函数上进行仿真实验,结果表明,在相同的实验条件下,改进后的粒子群算法在收敛精度和收敛速度上有显著提升,且其性能明显优于标准粒子群算法。

  • 单位
    智能信息处理与实时工业系统湖北省重点实验室; 武汉科技大学

全文