摘要

针对现有基于图神经网络的知识补全模型在处理知识图谱异构性上的不足,以及大部分模型采用的单一静态实体表示方式导致的模型表达能力受限问题,提出了一种基于图注意力网络的解纠缠邻域信息聚合模型。首先,该模型通过学习每个实体的解纠缠表示,对实体的潜在影响因子进行多组件表示。其次,利用注意力机制,为两个相连的实体选择最具影响力的潜在影响因子作为连接要素。接着,通过关系感知注意力机制自适应地聚合实体因子级的邻域消息,有效地减少了在信息聚合过程中不相关信息的相互干扰,进而显著增强了模型的语义表达能力。此外,为了使模型在评分过程中关注与给定关系最相关的实体组件,进一步引入了一个自适应评分系数使模型能够自适应地感知给定的关系与实体不同组件的关联度。实验结果显示,提出的模型在WN18RR和FB15K-237数据集的知识图谱补全任务上相较其他先进基线模型表现更优,并显著地增强了模型的表达能力。

全文