摘要

提出一种基于卷积神经网络的径向复合油藏自动试井解释方法,并利用现场实测数据验证其有效性和准确性。采用对数函数进行数据变换,采用均方误差作为损失函数,利用"dropout"方法避免过拟合,通过不断减小损失函数进行网络优化,得到最优的卷积神经网络。训练好的最优网络可直接用于解释径向复合油藏中井的压力恢复或压力降落数据,将给定的实测压力变化及其导数数据的双对数图输入到网络中,即可输出对应的油藏参数(流度比、储容比、无因次复合半径以及表征井储和表皮效应的无因次组),从而实现了试井参数解释的自动初拟合。利用大庆油田现场实测数据对该方法进行了验证,研究表明,该方法具有很高的解释精度,且优于解析法和最小二乘法。图12表6参29