在许多领域中,Bootstrap成为一种数据处理的有效方法。很多情况下,模型中感兴趣的参数的置信区间难以构建,为了解决这一问题,文章提出了一个新的贝叶斯Bootstrap置信区间的估计量,并做了蒙特卡洛模拟比较,结果比经典区间估计方法和经典Bootstrap方法更优,并进行了实例分析。