摘要
针对金属工件表面缺陷分割精度低的问题,通过对工件表面图像缺陷特征研究,提出以U-net为基础,结合多尺度自适应形态特征提取模块及瓶颈注意力模块的工件表面缺陷分割模型。首先,在网络中嵌入多特征注意力有效聚合模块,提高信息的利用率,提取更多相关特征,从而高精度地提取缺陷目标。然后,在网络中引入瓶颈注意力模块,增加缺陷目标的权重,优化特征的提取,获取更多的特征信息,从而获得更好的分割精度。改进后的网络平均精度达到0.8749,比原网络相比提高了2.92%,平均交并比达到0.8625,提高了3.72%。与原始网络相比,改进后的网络具有更好分割的精度,可以获得更好的分割结果。
- 单位