摘要
在线评论文本通常涉及多个评价对象,对象的表达方式有显式和隐式之分,针对不同对象的情感倾向可能不会完全一致.关键评价对象是评论中最受关注的对象,其相应的情感语义对整条评论的情感观点起主导作用.本文构建了融合关键对象识别与深层自注意力机制的Bi-LSTM模型,以提升短文本情感分类的效果.使用CNN处理文本,基于卷积层输出结果识别关键评价对象,并在此基础上完成深层自注意力的学习.将对象信息与文本信息进行融合,利用注意力机制强化的Bi-LSTM模型得到评论文本的情感分类结果.在酒店评论数据集上进行实验,与之前基于深度学习的模型相比,本文方法在精确率、召回率和F-score评价指标方面均有更好的表现.
-
单位新疆财经大学